We show how it is possible to assess the rate of convergence in the Gaussian approximation of triangular arrays of U-statistics, built from wavelets coefficients evaluated on a spherical Poisson field of arbitrary dimension. For this purpose, we exploit the Stein-Malliavin approach introduced in the seminal paper by Peccati, Solé, Taqqu and Utzet (2011); we focus in particular on statistical applications covering evaluation of variance in non-parametric density estimation and Sobolev tests for uniformity.

Gaussian approximation of nonlinear statistics on the sphere / Bourguin, Solesne; Durastanti, Claudio; Marinucci, Domenico; Peccati, Giovanni. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 436:2(2016), pp. 1121-1148. [10.1016/j.jmaa.2015.12.036]

Gaussian approximation of nonlinear statistics on the sphere

Durastanti, Claudio;
2016

Abstract

We show how it is possible to assess the rate of convergence in the Gaussian approximation of triangular arrays of U-statistics, built from wavelets coefficients evaluated on a spherical Poisson field of arbitrary dimension. For this purpose, we exploit the Stein-Malliavin approach introduced in the seminal paper by Peccati, Solé, Taqqu and Utzet (2011); we focus in particular on statistical applications covering evaluation of variance in non-parametric density estimation and Sobolev tests for uniformity.
2016
Malliavin calculus; Poisson process; Spherical wavelets; Stein's method; U-statistics; Analysis; Applied Mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Gaussian approximation of nonlinear statistics on the sphere / Bourguin, Solesne; Durastanti, Claudio; Marinucci, Domenico; Peccati, Giovanni. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 436:2(2016), pp. 1121-1148. [10.1016/j.jmaa.2015.12.036]
File allegati a questo prodotto
File Dimensione Formato  
solesene1.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 351.25 kB
Formato Adobe PDF
351.25 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1266564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact